Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Bioorg Chem ; 146: 107285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547721

RESUMO

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Assuntos
Quinases Ciclina-Dependentes , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Descoberta de Drogas
2.
Protein Sci ; 31(11): e4453, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36305769

RESUMO

Protein phosphorylation acts as an essential on/off switch in many cellular signaling pathways. This has led to ongoing interest in targeting kinases for therapeutic intervention. Computer-aided drug discovery has been proven a useful and cost-effective approach for facilitating prioritization and enrichment of screening libraries, but limited effort has been devoted providing insights on what makes a potent kinase inhibitor. To fill this gap, here we developed kinCSM, an integrative computational tool capable of accurately identifying potent cyclin-dependent kinase 2 (CDK2) inhibitors, quantitatively predicting CDK2 ligand-kinase inhibition constants (pKi ) and classifying different types of inhibitors based on their favorable binding modes. kinCSM predictive models were built using supervised learning and leveraged the concept of graph-based signatures to capture both physicochemical properties and geometry properties of small molecules. CDK2 inhibitors were accurately identified with Matthew's Correlation Coefficients (MCC) of up to 0.74, and inhibition constants predicted with Pearson's correlation of up to 0.76, both with consistent performances of 0.66 and 0.68 on a nonredundant blind test, respectively. kinCSM was also able to identify the potential type of inhibition for a given molecule, achieving MCC of up to 0.80 on cross-validation and 0.73 on the blind test. Analyzing the molecular composition of revealed enriched chemical fragments in CDK2 inhibitors and different types of inhibitors, which provides insights into the molecular mechanisms behind ligand-kinase interactions. kinCSM will be an invaluable tool to guide future kinase drug discovery. To aid the fast and accurate screening of CDK2 inhibitors, kinCSM is freely available at https://biosig.lab.uq.edu.au/kin_csm/.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Quinase 2 Dependente de Ciclina/química , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Descoberta de Drogas , Antineoplásicos/química
3.
Sci Rep ; 12(1): 410, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013496

RESUMO

Despite considerable advances obtained by applying machine learning approaches in protein-ligand affinity predictions, the incorporation of receptor flexibility has remained an important bottleneck. While ensemble docking has been used widely as a solution to this problem, the optimum choice of receptor conformations is still an open question considering the issues related to the computational cost and false positive pose predictions. Here, a combination of ensemble learning and ensemble docking is suggested to rank different conformations of the target protein in light of their importance for the final accuracy of the model. Available X-ray structures of cyclin-dependent kinase 2 (CDK2) in complex with different ligands are used as an initial receptor ensemble, and its redundancy is removed through a graph-based redundancy removal, which is shown to be more efficient and less subjective than clustering-based representative selection methods. A set of ligands with available experimental affinity are docked to this nonredundant receptor ensemble, and the energetic features of the best scored poses are used in an ensemble learning procedure based on the random forest method. The importance of receptors is obtained through feature selection measures, and it is shown that a few of the most important conformations are sufficient to reach 1 kcal/mol accuracy in affinity prediction with considerable improvement of the early enrichment power of the models compared to the different ensemble docking without learning strategies. A clear strategy has been provided in which machine learning selects the most important experimental conformers of the receptor among a large set of protein-ligand complexes while simultaneously maintaining the final accuracy of affinity predictions at the highest level possible for available data. Our results could be informative for future attempts to design receptor-specific docking-rescoring strategies.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Sítios de Ligação , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina/química , Ligantes , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Máquina de Vetores de Suporte
5.
Mini Rev Med Chem ; 22(8): 1197-1215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34711160

RESUMO

The transformation of a normal cell into a tumor cell is one of the initial steps in cell cycle deregulation. The cell cycle is regulated by cyclin-dependent kinases (CDKs) that belong to the protein kinase family. CDK2 is an enchanting target for specific genotype tumors since cyclin E is selective for CDK2 and the deregulation of specific cancer types. Thus, CDKs inhibitor, specifically CDK2/cyclin A-E, has the potential to be a valid cancer target as per the currently undergoing clinical trials. Most of the pyrazole scaffolds have shown selectivity and potency for CDK2 inhibitors. This review aims at examining pyrazole and pyrazole fused with other heterocyclic rings for antiproliferative activity. Based on the in vitro and molecular docking studies, the most potent analogues for CDK2 inhibition are exhibited by IC50 value. Moreover, the review emphasizes the various lead analogs of pyrazole hybrids which can be very potent and selective for anti-cancer drugs.


Assuntos
Quinase 2 Dependente de Ciclina , Neoplasias , Inibidores de Proteínas Quinases , Ciclo Celular , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia
6.
J Biomol Struct Dyn ; 40(19): 8825-8839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33931002

RESUMO

Cyclin-dependent kinases (CDKs) belong to a family of multifunctional enzymes that control cell cycle modifications, transcription, and cell proliferation. Their dysfunctions result in different diseases like cancer making them an important drug target in oncology and beyond. The present study aims at identifying the selective inhibitors for ATP binding site in CDK proteins (CDK1, CDK2, CDK4, and CDK5) following a multi-target drug designing approach. Significant challenges lie in identifying the selective inhibitor for the ATP binding site as this region is highly conserved in all protein kinases. Molecular docking coupled with molecular dynamics simulation and free energy of binding calculations (MMPBSA/MMGBSA) were used to identify the potent competitive ATP binding site inhibitors. All the four proteins were docked against the library of drug-like compounds and the outcomes of the docking study were further analyzed by Molecular dynamics (total of 6µs) and MMPB/GBSA techniques. Five different inhibitors for structurally distant protein kinases, i.e. CDK1, CDK2, CDK4, and CDK5 are identified with the binding energy (ΔGbind-PB) in the range -18.24 to -28.43Kcal/mol. Mechanistic complexities associated with the binding of the inhibitor are unraveled by carefully analyzing the MD trajectories. It is observed that certain residues (Lys33, Asp127, Asp145, Tyr15, Gly16, Asn144) and regions are critical for the retention of inhibitors in active pocket, and significant conformational changes take place in the active site region as well as its neighbor following the entry of the ligand inside active pocket as inferred by RMSD and RMSF. It is observed that LIG3 and LIG4 are the best possible inhibitors as reflected from their high binding energy, interaction pattern, and their retention inside the active pocket. This study will facilitate the process of multi-target drug designing against CDK proteins and can be used in the development of potential therapeutics against different diseases.


Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Simulação de Acoplamento Molecular , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Quinase 2 Dependente de Ciclina/química , Ciclo Celular , Trifosfato de Adenosina/metabolismo
7.
J Biomol Struct Dyn ; 40(19): 9030-9041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33949282

RESUMO

Cyclin-Dependent Kinase 2 (CDK2) and Vascular-Endothelial Growth Factor Receptor 2 (VEGFR2) are promising targets for the design of novel inhibitors in anticancer therapeutics. In a recent work, our group designed a set of potential dual inhibitors predicted to occupy an allosteric back pocket near the active site of both enzymes, but their dynamic and unbinding behavior was unclear. Here, we used molecular dynamics (MD) and metadynamics (meta-D) simulations to study two of these virtual candidates (herein called IQ2 and IQ3). Their binding mode was predicted to be similar to that observed in LQ5 and BAX, well-known back-pocket binders of CDK2 and VEGFR2, respectively, including H-bonding with critical residues such as Leu83/Cys113 and Asp145/Asp190 (but excepting H-bonding with Glu51/Glu111) in CDK2/VEGFR2, correspondingly. Likewise, while LQ5 and BAX unbound through the allosteric channel as expected for type-IIA inhibitors, IQ2 and IQ3 unbound via the ATP channel (except for CDK2-IQ2) as expected for type-I½A inhibitors. Interestingly, a C-C single/double bond difference between IQ2/IQ3, respectively, resulted associated with differences in the AS/T loop flexibility observed for CDK2. These insights will help developing scaffold modifications during an optimization stage, serving as a starting point to develop dual kinase inhibitors in challenging biological targets with a promising anticancer potential.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Quinase 2 Dependente de Ciclina/química , Ligação Proteica , Sítios de Ligação
8.
Sci Rep ; 11(1): 23681, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880385

RESUMO

Lung adenocarcinoma (LUAD) belongs to a subgroup of non-small cell lung cancer (NSCLC) with an increasing incidence all over the world. Tanshinone IIA (TSA), an active compound of Salvia miltiorrhiza Bunge., has been found to have anti-tumor effects on many tumors, but its anti-LUAD effect and its mechanism have not been reported yet. In this study, bio-information analysis was applied to characterize the potential mechanism of TSA on LUA, biological experiments were used to verify the mechanisms involved. TCGA, Pubchem, SwissTargetPrediction, Venny2.1.0, STRING, DAVID, Cytoscape 3.7.2, Omicshare, GEPIA, RSCBPDB, Chem Draw, AutoDockTools, and PyMOL were utilized for analysis in the bio-information analysis and network pharmacology. Our experiments in vitro focused on the anti-LUAD effects and mechanisms of TSA on LUAD cells (A549 and NCI-H1975 cells) via MTT, plate cloning, Annexin V-FITC and PI dual staining, flow cytometry, and western blot assays. A total of 64 differentially expressed genes (DEGs) of TSA for treatment of LUAD were screened out. Gene ontology and pathway analysis revealed characteristic of the DEGs network. After GEPIA-based DEGs confirmation, 46 genes were considered having significant differences. Further, 10 key DEGs (BTK, HSD11B1, ADAM33, TNNC1, THRA, CCNA2, AURKA, MIF, PLK1, and SORD) were identified as the most likely relevant genes from overall survival analysis. Molecular Docking results showed that CCNA2, CDK2 and PLK1 had the lowest docking energy. MTT and plate cloning assays results showed that TSA inhibited the proliferation of LUAD cells in a concentration-dependent manner. Annexin V-FITC and PI dual staining and flow cytometry assays results told that TSA promoted the apoptosis of the two LUAD cells in different degrees, and induced cycle arrest in the G1/S phase. Western blot results showed that TSA significantly down-regulated the expression of CCNA2, CDK2, AURKA, PLK1, and p-ERK. In summary, TSA could suppress the progression of LUAD by inducing cell apoptosis and arresting cell cycle, and these were done by regulating CCNA2-CDK2 complex and AURKA/PLK1 pathway. These findings are the first to demonstrate the molecular mechanism of TSA in treatment of LUAD combination of network bio-information analysis and biological experiments in vitro.


Assuntos
Abietanos/farmacologia , Adenocarcinoma de Pulmão/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Abietanos/química , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/patologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Aurora Quinase A/química , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Biologia Computacional/métodos , Ciclina A2/química , Quinase 2 Dependente de Ciclina/química , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Modelos Moleculares , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Transcriptoma
9.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206976

RESUMO

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine--C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3',2':4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 µM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3-49.0, 19.3-55.5, 22.7-44.8, and 36.8-70.7 µM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridinas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/química , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Desenho de Fármacos , Humanos , Imidazóis/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/química , Piridinas/síntese química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-Atividade
10.
Nat Commun ; 12(1): 2793, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990583

RESUMO

Capturing the dynamic processes of biomolecular systems in atomistic detail remains difficult despite recent experimental advances. Although molecular dynamics (MD) techniques enable atomic-level observations, simulations of "slow" biomolecular processes (with timescales longer than submilliseconds) are challenging because of current computer speed limitations. Therefore, we developed a method to accelerate MD simulations by high-frequency ultrasound perturbation. The binding events between the protein CDK2 and its small-molecule inhibitors were nearly undetectable in 100-ns conventional MD, but the method successfully accelerated their slow binding rates by up to 10-20 times. Hypersound-accelerated MD simulations revealed a variety of microscopic kinetic features of the inhibitors on the protein surface, such as the existence of different binding pathways to the active site. Moreover, the simulations allowed the estimation of the corresponding kinetic parameters and exploring other druggable pockets. This method can thus provide deeper insight into the microscopic interactions controlling biomolecular processes.


Assuntos
Ondas de Choque de Alta Energia , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular/estatística & dados numéricos , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
11.
Food Funct ; 12(10): 4630-4643, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33912870

RESUMO

Here, we investigated the chemical composition of the edible Phlomis aurea oil and its anticancer potential on three human cancer cell lines, as well as its antiviral activity against Herpes simplex-1 (HSV-1). Exploring Phlomis aurea Decne essential oil by gas chromatography coupled with mass spectrometry (GC/MS) revealed the presence of four major components: germacrene D (51.56%), trans-ß-farnesene (11.36%), α-pinene (22.96%) & limonene (6.26%). An antiproliferative effect, as determined by the MTT assay, against human hepatic, breast and colon cancer cell lines, manifested IC50 values of 10.14, 328.02, & 628.43 µg mL-1, respectively. Cytotoxicity assay of the Phlomis oil against Vero cell lines revealed a safe profile within the range of 50 µg ml-1. Phlomis essential oil induced the apoptosis of HepG2 cells through increasing cell accumulation in sub G1 & G2/M phases, decreasing both S & G0/G1 phases of the cell cycle, triggering both caspases-3 &-9, and inhibiting cyclin dependent kinase-2 (CDK2). The antiviral activity of the oil against HSV-1 was investigated using the plaque reduction assay, which showed 80% of virus inhibition. Moreover, the molecular docking in silico study of the four major chemical constituents of the oil at the CDK2 binding site demonstrated marked interactions with the ATP-binding site residues through alkyl & Pi-alkyl interactions. Cell cycle distribution of HepG2 cells was studied using flow cytometry to highlight the apoptotic mechanistic approaches by measuring caspases-3 &-9 and CDK2 activities. Thus, the edible Phlomis oil can be regarded as a candidate for in vivo studies to prove that it is a promising natural antiviral/anticancer agent.


Assuntos
Antivirais/química , Óleos Voláteis/química , Phlomis/química , Extratos Vegetais/química , Óleos de Plantas/química , Antivirais/farmacologia , Monoterpenos Bicíclicos , Sítios de Ligação , Ciclo Celular , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/química , Egito , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Sesquiterpenos , Sesquiterpenos de Germacrano
12.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919867

RESUMO

Novel 6-bromo-coumarin-ethylidene-hydrazonyl-thiazolyl and 6-bromo-coumarin-thiazolyl-based derivatives were synthesized. A quantitative structure activity relationship (QSAR) model with high predictive power r2 = 0.92, and RMSE = 0.44 predicted five compounds; 2b, 3b, 5a, 9a and 9i to have potential anticancer activities. Compound 2b achieved the best ΔG of -15.34 kcal/mol with an affinity of 40.05 pki. In a molecular dynamic study 2b showed an equilibrium at 0.8 Å after 3.5 ns, while flavopiridol did so at 0.5 Å after the same time (3.5 ns). 2b showed an IC50 of 0.0136 µM, 0.015 µM, and 0.054 µM against MCF-7, A-549, and CHO-K1 cell lines, respectively. The CDK4 enzyme assay revealed the significant CDK4 inhibitory activity of compound 2b with IC50 of 0.036 µM. The selectivity of the newly discovered lead compound 2b toward localization in tumor cells was confirmed by a radioiodination biological assay that was done via electrophilic substitution reaction utilizing the oxidative effect of chloramine-t. 131I-2b showed good in vitro stability up to 4 h. In solid tumor bearing mice, the values of tumor uptake reached a height of 5.97 ± 0.82%ID/g at 60 min p.i. 131I-2b can be considered as a selective radiotheranostic agent for solid tumors with promising anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Radioisótopos do Iodo/química , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Células A549 , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Células CHO , Morte Celular/efeitos dos fármacos , Cumarínicos/química , Cricetulus , Quinase 2 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7 , Simulação de Acoplamento Molecular , Distribuição Tecidual/efeitos dos fármacos
13.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920456

RESUMO

A simple and efficient BF3-OEt2 promoted C3-alkylation of indole has been developed to obtain3-indolylsuccinimidesfrom commercially available indoles and maleimides, with excellent yields under mild reaction conditions. Furthermore, anti-proliferative activity of these conjugates was evaluated against HT-29 (Colorectal), Hepg2 (Liver) and A549 (Lung) human cancer cell lines. One of the compounds, 3w, having N,N-Dimethylatedindolylsuccinimide is a potent congener amongst the series with IC50 value 0.02 µM and 0.8 µM against HT-29 and Hepg2 cell lines, respectively, and compound 3i was most active amongst the series with IC50 value 1.5 µM against A549 cells. Molecular docking study and mechanism of reaction have briefly beendiscussed. This method is better than previous reports in view of yield and substrate scope including electron deficient indoles.


Assuntos
Antineoplásicos/síntese química , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Indóis/síntese química , Maleimidas/síntese química , Succinimidas/síntese química , Células A549 , Alquilação , Antineoplásicos/farmacologia , Sítios de Ligação , Catálise , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células HT29 , Células Hep G2 , Humanos , Indóis/farmacologia , Cinética , Maleimidas/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Succinimidas/farmacologia
14.
Methods Mol Biol ; 2266: 39-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33759120

RESUMO

The interaction between a protein and its ligands is one of the basic and most important processes in biological chemistry. Docking methods aim to predict the molecular 3D structure of protein-ligand complexes starting from coordinates of the protein and the ligand separately. They are widely used in both industry and academia, especially in the context of drug development projects. AutoDock4 is one of the most popular docking tools and, as for any docking method, its performance is highly system dependent. Knowledge about specific protein-ligand interactions on a particular target can be used to successfully overcome this limitation. Here, we describe how to apply the AutoDock Bias protocol, a simple and elegant strategy that allows users to incorporate target-specific information through a modified scoring function that biases the ligand structure towards those poses (or conformations) that establish selected interactions. We discuss two examples using different bias sources. In the first, we show how to steer dockings towards interactions derived from crystal structures of the receptor with different ligands; in the second example, we define and apply hydrophobic biases derived from Molecular Dynamics simulations in mixed solvents. Finally, we discuss general concepts of biased docking, its performance in pose prediction, and virtual screening campaigns as well as other potential applications.


Assuntos
Simulação de Acoplamento Molecular/métodos , Proteínas/química , Solventes/química , Sítios de Ligação , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Software , Eletricidade Estática
15.
Methods Mol Biol ; 2266: 187-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33759128

RESUMO

Multicanonical molecular dynamics (McMD)-based dynamic docking has been applied to predict the native binding configurations for several protein receptors and their ligands. Due to the enhanced sampling capabilities of McMD, it can exhaustively sample bound and unbound ligand configurations, as well as receptor conformations, and thus enables efficient sampling of the conformational and configurational space, not possible using canonical MD simulations. As McMD samples a wide configurational space, extensive analysis is required to study the diverse ensemble consisting of bound and unbound structures. By projecting the reweighted ensemble onto the first two principal axes obtained via principal component analysis of the multicanonical ensemble, the free energy landscape (FEL) can be obtained. Further analysis produces representative structures positioned at the local minima of the FEL, where these structures are then ranked by their free energy. In this chapter, we describe our dynamic docking methodology, which has successfully reproduced the native binding configuration for small compounds, medium-sized compounds, and peptide molecules.


Assuntos
Anticorpos/química , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas/química , Secretases da Proteína Precursora do Amiloide/química , Anticorpos Monoclonais Humanizados/química , Ácido Aspártico Endopeptidases/química , Quinase 2 Dependente de Ciclina/química , Bases de Dados de Proteínas , Ligantes , Modelos Moleculares , Conformação Molecular , Análise de Componente Principal , Ligação Proteica , Temperatura
16.
J Mol Biol ; 433(5): 166795, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422522

RESUMO

The SCFSKP2 ubiquitin ligase relieves G1 checkpoint control of CDK-cyclin complexes by promoting p27KIP1 degradation. We describe reconstitution of stable complexes containing SKP1-SKP2 and CDK1-cyclin B or CDK2-cyclin A/E, mediated by the CDK regulatory subunit CKS1. We further show that a direct interaction between a SKP2 N-terminal motif and cyclin A can stabilize SKP1-SKP2-CDK2-cyclin A complexes in the absence of CKS1. We identify the SKP2 binding site on cyclin A and demonstrate the site is not present in cyclin B or cyclin E. This site is distinct from but overlapping with features that mediate binding of p27KIP1 and other G1 cyclin regulators to cyclin A. We propose that the capacity of SKP2 to engage with CDK2-cyclin A by more than one structural mechanism provides a way to fine tune the degradation of p27KIP1 and distinguishes cyclin A from other G1 cyclins to ensure orderly cell cycle progression.


Assuntos
Ciclina A/química , Quinase 2 Dependente de Ciclina/química , Inibidor de Quinase Dependente de Ciclina p27/química , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas Quinases Associadas a Fase S/química , Sítios de Ligação , Quinases relacionadas a CDC2 e CDC28/química , Quinases relacionadas a CDC2 e CDC28/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Ciclina E/química , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
17.
Med Chem ; 17(5): 501-518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31840613

RESUMO

BACKGROUND: Azolopyrimidines are imposed on the arena of drugs treated for cancer. The urgent need to discover new selective anticancer agents, paved the way to explore the antitumor significance of such fused systems. From the synthetic point of view, Microwave facilitated technique for synthesis is very strongly associated with green method in chemistry field. AIM: Our aim is to synthesize bioactive compounds using docking simulation run by MOE program to explore the binding mode of the most active enzyme inhibitor among the target compounds. METHODS: In addition to the use of conventional heating, the MARS system of CEM utilized for Microwave irradiation that is equipped with a multi-mode platform with a magnetic stirring plate and a rotor that allows the parallel processing of many vessels per batch. All the synthesized compounds were tested for their anticancer activity against hepatic cancer (HepG-2), breast cancer (MCF-7) and colon cancer (HCT-116). Screening against the cancer cell lines was performed, using doxorubicin as a reference drug. Docking studies were conducted using MOE software. RESULTS: A novel series of fluorinated fused-pyrimidine namely, pyrazolopyrimidine, triazolopyrimidine and pyrimidobenzimidazole were designed and synthesized conventionally and under microwave irradiations. The mechanistic pathways as well as the structure of all products were debated and demonstrated based on all possible spectral data. In-vitro examination of the novel prepared derivatives versus the three different human cancer cell lines [hepatic cancer (HepG-2), breast cancer (MCF-7) and colon cancer (HCT-116)] was evaluated to estimate their actual activity. CONCLUSION: We have developed a simple, facile, and efficient procedure for the formation of new series of azolopyrimidines. All spectra of all products were investigated deliberately to confirm their structures. The anti-cancer activity has been examined against three cancer cell lines e.g. HepG-2, MCF-7 and HCT116. Molecular modeling study was carried out in order to rationalize the in vitro anti-tumor results.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Benzimidazóis/síntese química , Benzimidazóis/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Temperatura , Triazóis/síntese química , Triazóis/metabolismo
18.
Chem Biol Drug Des ; 97(1): 97-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679606

RESUMO

Protein-ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein. In this paper, we introduce an efficient flexible docking method, GWOVina, which is a variant of the Vina implementation using the grey wolf optimizer (GWO) and random walk for the global search, and the Dunbrack rotamer library for side-chain sampling. The new method was validated for rigid and flexible-receptor docking using four independent datasets. In rigid docking, GWOVina showed comparable docking performance to Vina in terms of ligand pose RMSD, success rate, and affinity prediction. In flexible-receptor docking, GWOVina has improved success rate compared to Vina and AutoDockFR. It ran 2 to 7 times faster than Vina and 40 to 100 times faster than AutoDockFR. Therefore, GWOVina can play a role in solving the complex flexible-receptor docking cases and is suitable for virtual screening of compound libraries. GWOVina is freely available at https://cbbio.cis.um.edu.mo/software/gwovina for testing.


Assuntos
Simulação de Acoplamento Molecular , Software , Algoritmos , Sítios de Ligação , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Bases de Dados Factuais , Desenho de Fármacos , Humanos , Ligantes , Proteínas/química , Proteínas/metabolismo
19.
Molecules ; 25(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182318

RESUMO

Ethyl 5-arylpyridopyrimidine-6-carboxylates 3a-d were prepared as a one pot three component reaction via the condensation of different aromatic aldehydes and ethyl acetoacetate with 6-amino-1-benzyluracil 1a under reflux condition in ethanol. Additionally, condensation of ethyl 2-(2-hydroxybenzylidene) acetoacetate with 6-amino-1-benzyluracil in DMF afforded 6-acetylpyridopyrimidine-7-one 3e; a facile, operationally, simple and efficient one-pot synthesis of 8-arylxanthines 6a-f is reported by refluxing 5,6-diaminouracil 4 with aromatic aldehydes in DMF. Moreover, 6-aryllumazines 7a-d was obtained via the reaction of 5,6-diaminouracil with the appropriate aromatic aldehydes in triethyl orthoformate under reflux condition. The synthesized compounds were characterized by spectral (1H-NMR, 13C-NMR, IR and mass spectra) and elemental analyses. The newly synthesized compounds were screened for their anticancer activity against lung cancer A549 cell line. Furthermore, a molecular-docking study was employed to determine the possible mode of action of the synthesized compounds against a group of proteins highly implicated in cancer progression, especially lung cancer. Docking results showed that compounds 3b, 6c, 6d, 6e, 7c and 7d were the best potential docked compounds against most of the tested proteins, especially CDK2, Jak2, and DHFR proteins. These results are in agreement with cytotoxicity results, which shed a light on the promising activity of these novel six heterocyclic derivatives for further investigation as potential chemotherapeutics.


Assuntos
Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Pteridinas/síntese química , Piridinas/síntese química , Pirimidinas/síntese química , Xantina/síntese química , Células A549 , Antineoplásicos/farmacologia , Sítios de Ligação , Técnicas de Química Sintética , Quinase 2 Dependente de Ciclina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Fólico/química , Humanos , Concentração Inibidora 50 , Janus Quinase 2/química , Células MCF-7 , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-mdm2/química , Pteridinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Tetra-Hidrofolato Desidrogenase/química , Proteína Supressora de Tumor p53/química , Xantina/farmacologia
20.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992673

RESUMO

Isatin derivatives potentially act on various biological targets. In this article, a series of novel isatin-hydrazones were synthesized in excellent yields. Their cytotoxicity was tested against human breast adenocarcinoma (MCF7) and human ovary adenocarcinoma (A2780) cell lines using MTT assay. Compounds 4j (IC50 = 1.51 ± 0.09 µM) and 4k (IC50 = 3.56 ± 0.31) showed excellent activity against MCF7, whereas compound 4e showed considerable cytotoxicity against both tested cell lines, MCF7 (IC50 = 5.46 ± 0.71 µM) and A2780 (IC50 = 18.96± 2.52 µM), respectively. Structure-activity relationships (SARs) revealed that, halogen substituents at 2,6-position of the C-ring of isatin-hydrazones are the most potent derivatives. In-silico absorption, distribution, metabolism and excretion (ADME) results demonstrated recommended drug likeness properties. Compounds 4j (IC50 = 0.245 µM) and 4k (IC50 = 0.300 µM) exhibited good inhibitory activity against the cell cycle regulator CDK2 protein kinase compared to imatinib (IC50 = 0.131 µM). A molecular docking study of 4j and 4k confirmed both compounds as type II ATP competitive inhibitors that made interactions with ATP binding pocket residues, as well as lacking interactions with active state DFG motif residues.


Assuntos
Neoplasias da Mama/enzimologia , Quinase 2 Dependente de Ciclina , Citotoxinas , Hidrazonas , Isatina , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Neoplasias Ovarianas/enzimologia , Inibidores de Proteínas Quinases , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Isatina/química , Isatina/farmacologia , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...